The Role of the Cytoplasmic Pore in Inward Rectification of Kir2.1 Channels
نویسندگان
چکیده
Steeply voltage-dependent block by intracellular polyamines underlies the strong inward rectification properties of Kir2.1 and other Kir channels. Mutagenesis studies have identified several negatively charged pore-lining residues (D172, E224, and E299, in Kir2.1) in the inner cavity and cytoplasmic domain as determinants of the properties of spermine block. Recent crystallographic determination of the structure of the cytoplasmic domains of Kir2.1 identified additional negatively charged residues (D255 and D259) that influence inward rectification. In this study, we have characterized the kinetic and steady-state properties of spermine block in WT Kir2.1 and in mutations of the D255 residue (D255E, A, K, R). Despite minimal effects on steady-state blockade by spermine, D255 mutations have profound effects on the blocking kinetics, with D255A marginally, and D255R dramatically, slowing the rate of block. In addition, these mutations result in the appearance of a sustained current (in the presence of spermine) at depolarized voltages. These features are reproduced with a kinetic model consisting of a single open state, two sequentially linked blocked states, and a slow spermine permeation step, with residue D255 influencing the spermine affinity and rate of entry into the shallow blocked state. The data highlight a "long-pore" effect in Kir channels, and emphasize the importance of considering blocker permeation when assessing the effects of mutations on apparent blocker affinity.
منابع مشابه
Electrostatics in the Cytoplasmic Pore Produce Intrinsic Inward Rectification in Kir2.1 Channels
Inward rectifier K+ channels are important in regulating membrane excitability in many cell types. The physiological functions of these channels are related to their unique inward rectification, which has been attributed to voltage-dependent block. Here, we show that inward rectification can also be induced by neutral and positively charged residues at site 224 in the internal vestibule of tetr...
متن کاملMechanism for attenuated outward conductance induced by mutations in the cytoplasmic pore of Kir2.1 channels
Outward currents through Kir2.1 channels regulate the electrical properties of excitable cells. These currents are subject to voltage-dependent attenuation by the binding of polyamines to high- and low-affinity sites, which leads to inward rectification, thereby controlling cell excitability. To examine the effects of positive charges at the low-affinity site in the cytoplasmic pore on inward r...
متن کاملFunctional Roles of Charged Amino Acid Residues on the Wall of the Cytoplasmic Pore of Kir2.1
It is known that rectification of currents through the inward rectifier K(+) channel (Kir) is mainly due to blockade of the outward current by cytoplasmic Mg(2+) and polyamines. Analyses of the crystal structure of the cytoplasmic region of Kir2.1 have revealed the presence of both negatively (E224, D255, D259, and E299) and positively (R228 and R260) charged residues on the wall of the cytopla...
متن کاملMulti-ion distributions in the cytoplasmic domain of inward rectifier potassium channels.
Inward rectifier potassium (Kir) channels act as cellular diodes, allowing unrestricted flow of potassium (K(+)) into the cell while preventing currents of large magnitude in the outward direction. The rectification mechanism by which this occurs involves a coupling between K(+) and intracellular blockers-magnesium (Mg(2+)) or polyamines-that simultaneously occupy the permeation pathway. In add...
متن کاملFlecainide increases Kir2.1 currents by interacting with cysteine 311, decreasing the polyamine-induced rectification.
Both increase and decrease of cardiac inward rectifier current (I(K1)) are associated with severe cardiac arrhythmias. Flecainide, a widely used antiarrhythmic drug, exhibits ventricular proarrhythmic effects while effectively controlling ventricular arrhythmias associated with mutations in the gene encoding Kir2.1 channels that decrease I(K1) (Andersen syndrome). Here we characterize the elect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 130 شماره
صفحات -
تاریخ انتشار 2007